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Highlights
Molecular and functional pericyte studies
at single-cell resolution are providing new
insights into long-standing questions
about pericyte heterogeneity.

Pericytes are not identified by a single
marker but instead by gene expression
signatures that show substantial inter-
organ differences.

Pericytes orchestrate and precede endo-
thelial cell responses during angiogenesis.
Pericytes are known as themural cells in small-caliber vessels that interact closely
with the endothelium. Pericytes play a key role in vasculature formation and ho-
meostasis, and when dysfunctional contribute to vasculature-related diseases
such as diabetic retinopathy and neurodegenerative conditions. In addition, sig-
nificant extravascular roles of pathological pericytes are being discovered with
relevant implications for cancer and fibrosis. Pericyte research is challenged by
the lack of consistent molecular markers and clear discrimination criteria versus
other (mural) cells. However, advances in single-cell approaches are uncovering
and clarifying mural cell identities, biological functions, and ontogeny across
organs. We discuss the latest developments in pericyte pathobiology to inform
future research directions and potential outcomes.
Pericyte degeneration and dysfunction,
that are triggered by the onset of some
diseases, contribute to the progression
of those diseases in both vascular and
non-vascular contexts.

The number of diseases with pericyte
dysfunction continues to expand,
thereby anticipating a promising future
for pericyte-focused therapy.
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Multifaceted roles of mural cells in health and disease
Pericytes are classically defined as mural cells (see Glossary) that envelop the endothelium of
small caliber blood vessels, the so-called capillaries. Pericytes are embedded within the same
basement membrane as endothelial cells (ECs) and interact closely with them [1,2]. By contrast,
vascular smooth muscle cells (vSMCs), the other mural cell type, cover large arteries and veins,
and are physically separated from the endothelium by an intimal layer of extracellular matrix
(ECM). Of note, lymphatic capillaries lack pericytes under physiological conditions, although col-
lecting lymphatic vessels contain vSMCs [3].

A fundamental function of mural cells is to regulate the stabilization and function of blood vessels.
It is therefore not surprising that pericyte loss and dysfunction were linked to several diseases
including cancer and cerebrovascular diseases more than a decade ago [4,5]. However,
pericyte-focused therapies have been poorly explored. Instead, most studies on vascular-
directed therapeutic strategies have been on ECs – the central components that build blood
vessels. Emerging data are, however, changing the perception of pericytes from mere supporting
vascular cells that are recruited at the final stage of vessel formation to essential elements in the
early phases of angiogenesis that anticipate and orchestrate EC behavior. In addition, recent
research is revealing novel pathological roles for pericytes beyond their implications in the vascula-
ture. Collectively, we believe that these data open exciting avenues for pericyte-focused therapeu-
tic approaches and call for a broader understanding of these cells in disease progression.

We provide here a global overview of recent significant advances regarding our understanding of
the role of pericytes in different pathobiological scenarios and discuss the field's current para-
digms and controversies. First, we address new insights into the functions associated with
pericytes during physiological vascular responses. Second, we discuss evidence supporting a
role of pericytes in disease, including pericyte cell-autonomous implications beyond the vascula-
ture. For comprehensive details on pericyte biology, function ontology, and specific signaling
pathways, we refer the reader to [1,2,5]. Of importance, some of the emerging concepts in
pericyte biology described in the following sections have only been studied in one specific tissue.
To avoid confusion about the generalizability of pericyte properties, we frame each function by
considering the relevant organ of study.
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Glossary
Angiogenesis: the formation of new
blood vessels by expansion of
pre-existing vessels.
Blood–brain barrier (BBB): a
metabolic and physical barrier property
of the brain vasculature which controls
selective and hemodynamically
responsive transport of molecules
between the blood and the brain. It is
composed of a specialized non-
fenestrated endothelium that is
sustained by tight intercellular junctions,
in conjunction with the essential support
of pericytes, astrocytes, microglia, and
neurons.
CADASIL: abbreviation of cerebral
autosomal dominant arteriopathy,
subcortical infarcts, and
leukoencephalopathy, a disease that
occurs when the thickening of blood
vessel walls blocks the flow of blood to
the brain.
Capillary stalling: a pathological
process by which stalled leukocytes or
constriction of capillary pericytes blocks
capillary blood flow.
Co-opted vessels: a non-angiogenic
process throughwhich tumor cells make
use of pre-existing resident blood
vessels to sustain tumor growth.
Mural cells: cells which surround the
endothelium of blood and lymphatic
vessels and support their function. They
comprise a heterogeneous cell
population with a variety of tissue-
dependent phenotypes, and are largely
Key concepts about pericytes in physiology
Pericytes: a particular subtype of mural cells
Pericytes exhibit significant inter- and intra-tissue molecular differences and exert tissue-specific
functions [2]. Their molecular, morphological, and functional heterogeneity is inextricably linked to
their diverse developmental origins, modes of vessel recruitment, and specific anatomical local-
ization. For example, pericytes of the central nervous system (CNS) microvasculature are firmly
and continuously invested around the endothelium to support vascular barrier properties,
whereas liver pericytes, commonly referred to as hepatic stellate cells (HSCs), reside in the
perisinusoidal space, are loosely and discontinuously associated to ECs, and hold a unique vita-
min A storage capacity [2]. Tomeet tissue-specific demands, pericyte distribution and density are
variable among organs and vascular beds, with the CNS microvasculature showing the greatest
pericyte-to-EC abundance. From a molecular standpoint there is no single molecular marker that
can exclusively identify pericytes (Box 1), albeit the emergence of single-cell techniques is shed-
ding light on tissue-specific pericyte molecular markers and functions. For example, the first mo-
lecular atlas of vascular cell types in the brain of adult mice by single-cell RNA sequencing
(scRNA-seq) revealed that mural cells follow a gradient of transitional phenotypes. This gradient
occurs at the interface of precapillary arterioles, capillaries, and postcapillary venules, and does
not follow a single continuum along the arteriovenous axis (Figure 1 and Box 1) [6]. Whether
this gradient of transitional phenotypes is specifically restricted to the brain vasculature or is
also present in other vascular beds remains to be determined. Indeed, pericytes exhibit many
organotypic differences in the expression of molecular markers (Figure 2 illustrates three top-
ranked pericyte markers with enriched expression per organ), of which the expression of trans-
porters and components of the contractile machinery exhibit the greatest differences between
organs [7]. Another intriguing observation is that pericytes exhibit more cross-organ heterogene-
ity than vSMCs [7,8]. Currently, the inter-tissue differences in the behavior of the two main mural
cell types are not completely understood. However, this may be because pericytes exhibit a
greater cell-intrinsic plasticity to adapt their molecular portfolio and function to tissue-specific de-
mands, whereas vSMCs fulfill a more universal function across tissues. In contrast to the tissue-
specific transcriptomic differences, the expression of transcription factors appears to be relatively
conserved in mural cells across organs, thereby suggesting that mural cell subtypes are defined
Box 1. Unraveling the identity of pericytes

The identification of pericytes remains a challenging task. Despite ongoing efforts, there is no consensus regarding unam-
biguous criteria for pericyte identification. To date no single molecular marker can exclusively identify all pericytes or distin-
guish pericytes from other cell types, although scRNA-seq is now providing new opportunities to discern pericyte marker
heterogeneity and tissue specificity [6,8,71,93]. The use of transgenic reporter mouse models has been instrumental to
label, trace, and locate different mural cell populations in vivo. A combination of multiple reporter lines is often necessary
to properly identify and discriminate pericytes from endothelial cells (ECs) and other perivascular cells [6–8]. Mural cells
are highly plastic cells; phenotypic zonation of mouse brain mural cells has revealed that these cells do not follow a single
continuum along the arteriovenous axis (see Figure 1A,B in main text) [6]. From a transcriptional point of view, there are two
distinct continuums of mural cells: (i) capillary pericytes and venous smoothmuscle cells (SMCs), where pericytes gradually
transition to a venous SMC phenotype, and (ii) arterial SMCs which transition in an distinct pattern towards arteriole SMCs.
The transcriptional resemblance between mouse brain pericytes and venular mural cells [6], as well as the lack of classic
pericytes in several organs [7,8], have led to the hypothesis that capillary pericytes are transcriptionally andmorphologically
similar to venous SMCs in some tissues. Human brain mural cells recapitulate the mouse zonation pattern, although hu-
man pericytes are evenly distributed over capillaries and veins [50,94]. Unlike the anatomical separation of pericytes and
venous SMCs in the mouse brain, subtypes of human pericytes are discerned by functionality marked by solute transport
and extracellular matrix (ECM) organization [50]. Unfortunately, the ability of mouse markers to predict the presence of hu-
man pericytes remains limited, and only a select few retain adequate specificity. The use of zebrafishmodels may provide a
better alternative to study conserved pericyte genes [95]. We believe that RGS5, NDUFA4L2, KNCJ8, HIGD1B, ABCC9,
NOTCH3, and PDGFRB are currently themost organ and species conserved pericytemarkers, although detailed intra-tissue
characterization remains necessary when studying pericytes (see Figure 2 in main text).
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grouped into pericytes and vascular
smooth muscle cells (vSMCs).
Neurovascular coupling: the tight
physiological coordination between
neuronal activity and changes in local
blood flow to match the oxygen and
nutrient demands of active brain regions.
Pericrine signaling: pericyte-derived
signals that act on neighboring cells.
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Figure 1. Schematic representation of mural cell zonation in the adult mouse brain. (A) Localization on the
arteriovenous axis, and (B) transcriptional gene expression of common molecular markers associated with mural cells.
Brain mural cells are classified into distinct phenotypic gradients (indicated by the black arrows): arterial smooth
muscle cells (aSMCs) with arteriole SMCs (aaSMCs), and capillary pericytes with venous SMCs (veSMCs). Mural cells
located on venules are transcriptionally similar to pericytes and are hence referred to as venular pericytes (vPCs).
Compared to pericytes and veSMCs, aSMCs and aaSMCs express high amounts of contractility genes such as Tagln,
Acta2, Myh11, and Cnn1 (in red). Kcnj8, Abcc9, and Vtn (in yellow) are examples of markers most specific for
pericytes, although they are also expressed by veSMCs (in green). Of note, canonical markers Anpep and Cd248 are
specific for brain pericytes but lose their predictive value in most other tissues, indicative of organotypic specialization.
The markers Pdgfrb, Cspg4, Rgs5, and Notch3 demonstrate broad expression in all mural cells and appear to be
most conserved.
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by epigenetic mechanisms [7]. Accordingly, DNA hypermethylation was recently found to
control alpha smooth muscle actin (αSMA) expression in renal mural cells after ischemia [9].
This indicates that methods such as assay for transposase-accessible chromatin sequencing
(ATAC-seq) will be instrumental to further understand mural cell phenotypes.
60 Trends in Cell Biology, January 2024, Vol. 34, No. 1

Image of &INS id=
CellPress logo


TrendsTrends inin Cell BiologyCell Biology

Kcnj8
Abcc9
Vtn

PDGFRB
RGS5

HIGD1B

Kcnj8
Abcc9
Vtn

HIGD1B
RGS5
ABCC9

Higd1b
Pdgfrb
Vtn

HIGD1B
NDUFAFF 4L2
PDGFRB

Ndufa4l2
Higd1b
Notch3

RGS5
NDUFAFF 4L2
HIGD1B

Rgs5
Ndufa4l2

Vtn

RGS5
NDUFAFF 4L2
HIGD1B

Figure 2. Organotypic heterogeneity of pericyte markers. This figure summarizes top-ranked pericyte markers in the
brain, heart, lung, kidney, and colon of mouse (upper row) and human (lower row). Pericyte markers were chosen based on a
stringent evaluation of transcriptional abundance, specificity, and homogeneity utilizing information provided by single-cell
RNA sequencing (scRNA-seq) data [6–8,50,82,84,85,95,100–102]. Validation of the selected markers by in situ analysis
was used as a second criteria for their selection.
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Pericytes at play during vascular growth
Many studies have documented that pericytes contribute to angiogenesis [10]. The historical view
proposes that pericytes mainly contribute to the late stages of vessel formation [2,10]. By taking
advantage of the mouse retina as a paradigmatic experimental model of developmental angio-
genesis, this concept has been challenged [11–16]. Indeed, these studies showed that, during
the early phases of developmental angiogenesis, pericytes, which have not yet achieved the ma-
turity seen in formed vessels, are permissive to cell-cycle progression, morphological adaptation,
and migration [12,13]. In this setting, pericyte growth precedes the expansion of ECs, although it
is still unclear why. One possibility is that, by expanding rapidly, pericytes ensure the production of
sufficient EC growth signals, a hypothesis which is coherent with the observation that inhibition of
pericyte activation blocks EC proliferation [12] and induces nuclear translocation of FOXO1 [11],
the master regulator of EC quiescence [17]. Another study that examined the brain vasculature
showed that, when pericytes are absent, ECs become angiogenic but are not able to proliferate
[18], thereby supporting a model in which ECs require the presence of pericytes to expand.
Nonetheless, it is fair to acknowledge that other studies have shown that reduced pericyte cov-
erage leads to increased EC proliferation [19]. Although these discrepancies highlight that
pericyte–EC interactions are complex, they may be explained by the differences between the an-
imal models and genetic strategies used to interfere with pericytes. Importantly, pericyte behav-
iors during angiogenesis have been mostly described in tissues belonging to the CNS. Hence,
given the high abundance of pericytes in the CNS, it is possible that angiogenic pericytes fulfill dif-
ferent roles in tissues where ECs substantially outnumber them. Another interesting observation
is that, during angiogenesis, immature pericytes remain in close contact with ECs, although they
do not cover them in their entirety [12,20]. This suggests that pericyte–EC communication during
angiogenesis relies on both paracrine and juxtracrine signaling, andmay explain why pericyte loss
[11,16,21,22] and impaired transition to a fully maturate state [12] lead to distinct endothelial phe-
notypes during angiogenesis. scRNA-seq analysis of prenatal developing human brains con-
firmed that angiogenesis is supported by immature mural cells [20]. Consistent with mouse
data [12], the state of mature human pericytes correlates with the progression of angiogenesis.
Furthermore, the gene expression profiles of these cells show involvement in processes related
to the transport across the blood–brain barrier (BBB) and the synthesis of ECM components
[20]. Together, these data support a model in which pericytes modulate the early phases of an-
giogenesis by directly regulating EC behavior. Intriguingly, however, detailed ultrastructural
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analysis of angiogenic vessels in human brain distinguishes only a single mural cell population,
compared to three distinct EC populations [20]. This suggests that ultrastructural features do
not define subtype specification in the mural cell compartment, and that molecular and structural
features are not necessarily associated with each other.

Brain pericytes and vessel contraction: a matter of transitional phenotypes
Although the regulation of vascular tone through pericyte contractility is considered to be an important
function of cardiac, renal, and pulmonary pericytes, as well as of HSCs [2], there has been a long-
standing debate in the field as to whether pericytes actively modulate cerebral blood flow [23–25].
For instance, by using optical imaging, Hill et al. suggested that neural/glia antigen 2-positive
(NG2+) αSMA− pericytes are not contractile and do not actively modulate the capillary diameter
[26]. Instead, by similar optogenetic approachesHartmann et al. proposed that pericytes do constrict,
although they require prolonged and more intense stimulation than αSMA+ mural cells located at
larger vessels [27]. Although no consensus has been established, the opposing results between stud-
ies may simply reflect heterogeneities in the type of blood vessels and mural cells analyzed. A recent
report has shown that NG2+αSMA+ mural cells, located at the transitional segment between arteries
and capillaries, regulate the vascular tone and contractility [28]. This suggests that the transition of
functional phenotypes betweenmural cells covering distinct types of blood vessels is tightly regulated.

scRNA-seq analysis of brain mural cells has revealed an abrupt change in the molecular signa-
tures of pericytes and mural cells located in arteries, even from cells residing in proximity on the
vasculature, thereby supporting the existence of a blunt transition [6]. Taken together, one can
speculate that, in addition to defined vSMC types, there is a subtype of mural cells that exhibit
some traits, but not all, of classic pericytes, and are located at transitional vessels and can mod-
ulate the vascular tone. Given the ability of pericytes to adapt their phenotype to various microen-
vironmental conditions [1,2], it is also possible that regulation of blood flow may only occur under
specific circumstances. However, one should consider that some of the data disputing pericyte
contractility may relate to experimental artefacts, and it should be stressed that most analyses
were conducted in the cerebral vasculature as a prototypical example of a vascular bed that is
highly sensitive to contraction [25]. An important observation is that pericytes exhibit significant
organotypic differences in the basal expression of contractility genes, and pericytes in the bladder
and colon express considerable levels ofMyh11, Tagln, and Acta2 (αSMA), whereas pericytes in
the brain, lung, and heart express negligible amounts of these contractile genes [6,7]. This high-
lights a conundrum regarding how brain pericytes regulate vessel contractility when typical con-
tractility genes are not expressed.

Pericyte safeguarding the capillary brain bed by a special touch
An essential function of pericytes is to regulate the BBB by controlling the passage of fluid and sub-
stances into the parenchymal space [22,29]. Hence, defective pericyte coverage caused by pericyte
dysfunction, impaired pericyte recruitment, and pericyte loss all lead to increased EC transcytosis and
permeability [22,29]. Aberrant platelet-derived growth factor B (PDGF-B)/platelet-derived growth fac-
tor receptor beta (PDGFRβ) signaling is sufficient to experimentally reduce pericyte abundance and
the subsequent loss of BBB properties [22,29]. In addition, proper ECM deposition by pericytes
(among other cell types composing the neurovascular unit) plays an essential role in maintaining the
integrity of the vascular barrier. Indeed, pericyte-derived vitronectin prevents endothelial transcytosis
by binding to integrin α5 subunit on ECs [30], and pericyte-secreted laminin interacts with the
dystrophin–glycoprotein complex in astrocytes and regulates their endfeet polarization [5,31].

To serve as guardians of the capillary bed, pericytes also establish physical interactions with ECs and
form a continuous chain-like network along the capillaries of the cerebral vasculature. Adequate
62 Trends in Cell Biology, January 2024, Vol. 34, No. 1
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coverage of the endothelium is sustained by active remodeling of distal pericyte processes through
cytoskeletal rearrangements [32]. Of relevance, pericyte remodeling capabilities become exhausted
with age [33], and this may explain why pericyte coverage is diminished in the vasculature of oldmice
[33,34]. An interesting observation is that pericyte depletion in adult mice leads to relatively mild BBB
defects in different experimental models [35,36]. This includes adult induced Pdgfb ablation [36] and
diphtheria toxin A (DTA) expression in PDGFRβ+ cells [35]. Currently it is not clear why loss of
pericytes leads to different vascular barrier phenotypes in development and adulthood. Given that
the BBB becomes functional during late embryonic development, one can speculate that defects
in pericyte coverage are only significant before the onset of BBB formation. Another possibility is
that pericyte coverage determines the threshold for BBB defects, and Vazquez-Liebanas et al.
showed that only <50% longitudinal pericyte coverage in adult brains leads to significant leakage de-
fects [36]. This is coherent with previous observations of brain vessel phenotypes during develop-
ment which demonstrated that pericyte coverage is positively correlated with BBB integrity [22].
Choe et al. also reported that DTA-induced loss of pericytes leads to capillary stalling due to in-
creased interactions between ECs and leukocytes. However, because this effect was not observed
in other adult pericyte depletion models [35], one should acknowledge that it is possible that the
expression of DTA generated unintended toxic effects beyond pericytes.

Pericytes in disease
Pericyte dysfunction is a hallmark of various diseases (Figure 3). For a long time it was believed
that maladaptive pericytes mainly affect vascular homeostasis because pericyte and EC func-
tions are interdependent and require bidirectional communication (Box 2). However, there is
growing evidence that pericytes have roles in processes beyond the vasculature. As such,
pericyte-derived signals (hereafter referred to as pericrine signaling) also modulate tissue
function in both physiology and disease. In the following section, we capture recent data show-
ing new observations that link pericyte dysfunction and loss in vascular and non-vascular-
related diseases.

The CNS: a hotspot of pericyte-related vascular diseases
Pericyte-related vascular defects have been reported in various CNS diseases, including
Alzheimer's disease (AD), Parkinson's disease, dementia, stroke, diabetic retinopathy, glaucoma,
and intracranial vascular malformations [5,37–39]. The involvement of pericytes in several CNS-
related diseases is partially explained by their abundance within the brain vasculature and their
key role in maintaining the BBB, where barrier breakdown precedes neurodegeneration. Other
phenotypes linking pericytes dysfunction and CNS disease include neuron death [40] and im-
paired neurovascular coupling [41,42]. Intriguingly, NG2+ retinal pericytes orchestrate
neurovascular coupling through closed-ended nanotubes between pericytes on adjacent capil-
laries, even when they are positioned far apart. These nanotubes terminate in a gap junction at
the recipient pericyte, which permits rapid fluxes of small molecules and calcium ions, thereby
allowing pericytes to coordinate neuronal activity [41]. Indeed, maintaining adequate calcium
levels is essential to sustain pericyte function in the CNS, and aberrant levels of calcium in
NG2+ pericytes lead to poor recovery after ischemic stroke [23,43] or neovascular dysfunction
and neuronal death in glaucoma [42].

AD is the prototypical example of a CNS disease associated with aberrant vascular function and
BBB breakdown linked to pericyte dysfunction and loss [38,44]. Although the involvement of
pericytes in AD has been recognized for several years [5,44], new insights have challenged the
timeframe in which patients suffering from AD develop pericyte dysfunction and BBB impairment.
Indeed, it is now understood that BBB breakdown is an early event in AD, and these defects are
used as an early biomarker of cognitive decline [45]. We highlight recent observations which
Trends in Cell Biology, January 2024, Vol. 34, No. 1 63
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Figure 3. Dysfunctional pericytes in disease. This figure illustrates a compendium of pathological features associated with
pericyteswhich have been shown to contribute to disease onset/progression. Alterations include cell-intrinsic processes (cell death,
defective migration, and metabolic reprogramming), reduced functionality (increased transcytosis and altered contractility), and
altered environmental interactions [extracellular matrix (ECM) remodeling, immunomodulation, and enhanced tumorigenesis].

Box 2. Key signaling pathways that orchestrate pericyte–EC crosstalk

Given the close relationship between pericytes and ECs, it is not surprising that bidirectional communication and regulation
between them are crucial during vessel formation and maintenance. During angiogenesis, established examples of pericyte–
EC communication include the PDGFRβ, transforming growth factor β1 (TGF-β1), ANG1, and NOTCH3 pathways [1].
PDGF-B production from tip ECs is the master signal that recruits PDGFRβ-expressing pericytes to newly formed vessels
[1], together with CD146 (MCAM), which acts as a coreceptor for PDGFRβ [96]. Recent advances have shown that
NCK1 and NCK2 promote phosphorylation of PDGFRβ in response to PDGF-BB and stimulate pericyte migration by induc-
ing MRTF translocation to the nucleus where they interact with the serum response transcription factor (SRF) [13,21]. Sim-
ilarly, jagged 1 (JAG1) expressed by ECs activates NOTCH3 in pericytes and promotes pericyte maturation [14,97] and the
expression of PDGFRβ [98]. Conversely, ANG1 is secreted by pericytes, activates the tyrosine receptor TIE2 in ECs, and pro-
motes ECmaturation and vascular integrity [2,15]. TGF-β exerts complex effects on ECs and pericytes, and TGF-B receptor
1 (also known as ALK5) plays a dominant role in these interactions. Indeed, deletion of ALK5 in ECs leads to pericyte dys-
function and hemorrhagic vascular malformations [99]. Instead, deletion of ALK5 in pericytes results in increased EC prolif-
eration, reduced collagen deposition, and enhanced matrix metalloproteinase activity [19]. Of note, pericytes also express
canonical EC receptors such as VEGF-R1 [15,16] and TIE2 which allow pericytes to modulate intrinsic EC signaling.

Trends in Cell Biology
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support the involvement of pericytes in the onset of AD. For instance, Nortley et al. showed that
the reduction in cerebral blood flow, that is considered to be the first clinical manifestation of AD,
is caused by amyloid-β-induced pericyte contraction in brain capillaries [46]. Another study indi-
cated that cognitive decline and BBB disruption in AD are linked to accelerated pericyte degen-
eration in carriers of AD susceptibility allele apolipoprotein E4 (APOE4) [47], a process which
occurs independently of amyloid-β pathology. In this context, APOE4 carriers show high baseline
cerebrospinal fluid levels of soluble (s)PDGFRβ which can be used as a BBB pericyte injury bio-
marker [47]. Intriguingly, analysis of the cortex of APOE4 transgenic mice using single-nucleus
(sn)RNA-seq and phosphoproteomics revealed profound molecular changes related to progres-
sive BBB failure in both ECs and pericytes [48]. Nonetheless, because only a constitutive APOE4-
expressing transgenic line was included in the study, it remains unclear whether the molecular
alterations of ECs and pericytes solely comprise cell-autonomous effects. In addition, one should
not forget that mice do not fully recapitulate all traits of AD. It has been recently noted that
pericytes and microglia associations (described in both physiological mouse and human brains)
are diminished in the brain capillaries of individuals with AD, and this may also have implications
for BBB breakdown [49]. In human brain, two types of pericytes have been identified that are dis-
tinguished by solute transport and ECM organization (Box 1). Intriguingly, the second type seems
to be selectively affected in AD [50]. Thus, identifying methods to specifically target this cluster of
pericytes may provide new ways to maintain vascular fitness in AD.

Pericyte degeneration and death also encompasses early phases of diabetic retinopathy, in
which pericytes are primary targets of hyperglycemic damage. Recent findings suggest that,
upon initiation of hyperglycemia, pericytes shift towards cell-bridging positions, resulting in phys-
ical detachment from ECs [51]. Whether this remodeling is independent of pericyte death or is
related to the initiation of that process needs further investigation. Mechanistically, pericyte de-
tachment and shifting are induced by exogenous factors such as angiopoietin 2 (ANG2) and
PDGF-B, and are reversed by insulin treatment, illustrating the dynamic behavior of pericytes in
the microvasculature [51,52]. In line with this, PDGFB signaling through PDGFRβ and NCKs
in pericytes that cover sprouting vessels during experimental proliferative retinopathy [oxygen-
induced retinopathy (OIR) model] activates ectopic αSMA expression and promotes patholog-
ical neovascularization [21]. Interestingly, depletion of retinal pericytes in adulthood does not
phenocopy retinopathy unless another stimulus is present (e.g., vascular endothelial growth
factor A, VEGF-A). Upon depletion of pericytes, either during vessel development or in adult-
hood followed by VEGF addition, inhibition of ANG2 action restrains the severity of the diabetic
retinopathy-like phenotypes [11]. Molecular effectors governing the early phases of diabetic
retinopathy have remained elusive, precluding the development of drugs aiming to halt disease
onset. These data suggest that targeting pericyte adhesion and migration capacities may be of
therapeutic interest. Furthermore, pericyte loss in diabetic retinopathy was recently associated
with aberrant levels of circular RNAs [53], thereby suggesting the use of circular RNAs as a
diagnostic biomarker for early pericyte dysfunction in disease.

Finally, we would like to stress that familial mutations in essential pericyte genes have also been
linked to CNS abnormalities. Well-known examples include loss-of-function mutations in
NOTCH3 as a cause of CADASIL [54], and mutations in PDGFRB as a cause of brain calcifica-
tions [55], neurological deterioration, and white matter lesions [56]. Of note, these genes are
equally relevant for pericyte and vSMC biology, and it is unclear whether these mutations lead
to distinct phenotypes in mural cells. Current next-generation sequencing approaches allow
the discovery of somatic mutations present in pericytes at low allelic frequency. In line with this,
it has been proposed that PIK3CA- and AKT-related somatic cerebral cavernous malformations
in mice emerge frommutant pericytes [39,57]. However, these data have some caveats because
Trends in Cell Biology, January 2024, Vol. 34, No. 1 65
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the lineage-tracing experiments used to support these findings were performed with a CRE-
recombinase mouse line that is neither pericyte-specific nor inducible.

Pathobiological pericytes beyond the CNS
Although the implications of pericytes in diseases beyond the CNS are less well studied, the num-
ber of diseases demonstrating the involvement of pericytes continues to expand. We discuss
here emerging evidence supporting a relevant role of pericytes in myocardial infarction [58],
acute lung injury [59], and diabetes [60] as prototypical examples. For instance, after myocardial
infarction, pericytes regulate inflammation and immune cell trafficking, and modulate ECM re-
modeling and revascularization [61]. In line with this, molecular reprogramming of PDGFRβ+NG2+

cardiac pericytes into vSMCs through inhibition of MEK1/2 improved the functional cardiac re-
sponse by promoting revascularization [58]. In acute lung inflammation, the crosstalk between
endothelium-derived nitric oxide (NO) and pericyte soluble guanylate cyclase (sGC) is impaired,
leading to elevated vascular permeability [59]. Pharmacological activation of the NO–sGC axis
led to an improved pericyte-driven inflammatory response. Moreover, pericytes in pancreatic is-
lets exert vascular control of hormone secretion and glucose homeostasis, and pericyte alteration
has been linked to diabetic islet dysfunction [60]. Interestingly, pericyte effects on islet functionality
are not limited to vascular support for insulin secretion because pancreatic β cell maturation and
functionality rely on pericyte-derived bone morphogenic protein 4 (BMP4). Recently, other
pericrine signaling molecules have been identified as key players in the functional regulation of tis-
sue parenchyma encompassing a range of organ-specific functions in both vascular and non-
vascular interfaces. Two interesting examples are that leptin receptor-expressing pericytes in
the mediobasal hypothalamus mediate energy balance via neuronal leptin signaling [62], and
that the Hippo–YAP/TAZ pathway in pericytes generates essential pericrine signals to epithelial
and ECs during lung morphogenesis [63]. All things considered, these studies suggest that re-
storing the physiological functions of pericytes improves blood vessel performance and disease
outcomes in various contexts, which may encourage the development of novel pericyte-
focused therapies.

Tumor pericytes: loss or change of identity?
Many preclinical studies over the past decade showed that pericyte dysfunction is involved in
cancer progression [64]. In this context, it is now well established that tumoral vessels are poorly
covered by pericytes [65,66], that diminished pericyte recruitment and maturation lead to en-
hanced vascular and tumor growth [15,66], and that pericyte depletion favors metastasis. How-
ever, there is no consensus about whether defective pericyte–EC interaction in tumors relates to
loss of pericyte molecular identity [67], pericyte transdifferentiation into fibroblasts [68], poor
pericyte recruitment [66], or a combination of these phenotypes. Functionally, metabolic repro-
gramming of tumor pericytes has also been implicated in abnormal blood vessel contraction
and unfavorable patient outcomes [69].

scRNA-seq analyses have provided a new layer of information about tumor pericytes by showing
that tumor pericytes are, in fact, relatively homogeneous [70–72]. However, one should acknowl-
edge that most tumor scRNA-seq datasets include low numbers of pericytes, and the presence
of tumor pericyte subclusters may have been obscured by the granularity of the data. One way to
overcome this limitation would be to establish spatially resolved pericyte-focused atlases by using
multiomic approaches. An interesting observation is that pericyte phenotypes are distinct de-
pending on the mechanisms by which tumor vessels form. While angiogenic pericytes persist
in an active immature state characterized by a signature of motility and ECM organization,
pericytes covering co-opted vessels remain largely quiescent [71,73]. Together, these studies
support a model in which pericytes undergo genetic and molecular reprogramming in cancer,
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which in turn has negative consequences for disease progression. Nonetheless, one should not
forget that most of these data refer to mouse preclinical studies, and adequate longitudinal stud-
ies in humans are missing. Of note, the so-called pericrine signaling response is also at play in
cancer. Indeed, in hepatocellular carcinoma it has been shown that metabolic reprogramming
in tumor cells activates HSCs which in turn promote tumorigenesis through the secretion of
senescence-associated factors [74]. Another study has described that loss of integrin β3 in
tumor pericytes leads to enhanced focal adhesion kinase (FAK)-mediated cytokine release by
pericytes, which subsequently stimulates tumor survival and growth [75].

Pericyte immunomodulatory properties
Emerging evidence suggests that pericytes form an integral part of the immune surveillance unit
rather than solely performing complementary functions. Upon proinflammatory stimuli, pericytes
promote endothelial expression of the leukocyte adhesion molecules vascular cell adhesion
protein 1 (VCAM-1) and/or intracellular adhesion molecule 1 (ICAM-1) in the CNS, lung, skin, or
muscle that subsequently promote T cell or macrophage infiltration into the affected tissue
[59,76,77]. The Rgs5+ and Col1a1+ subgroups of PDGFRβ+ perivascular cells seem to be early
responders to neuroinflammation [78]. Of note, inflammation per se induces pericyte detachment
from the endothelium and impairs barrier properties [59]. In addition to the physical interaction
with leukocytes, pericytes also secrete and respond to cytokines that further regulate immune
cell functions, including both innate and adaptive responses. The chemotactic migration and ef-
fector functions of neutrophils, T cells, and macrophages are dependent on these early pericrine
signals, including MIF, CXCL1, and CCL2 [77–80].

It is now believed that modulation of the immune-related functions of pericytes could affect the
outcome of disease progression. For example, pericyte-deficient Pdgfbret/ret mice exhibit in-
creased leukocyte infiltration and activation, leading to aberrant inflammation in a model of exper-
imental autoimmune encephalomyelitis [76]. Treatment with antagonistic VCAM-1 and ICAM-1
antibodies partially rescued the excessive inflammatory phenotype in Pdgfbret/ret mice. Similarly,
activating sGC in acute lung injury improved disease outcomes by increasing pericyte interaction
with ECs [59]. Conversely, in the tumor microenvironment, tumor cells induce autophagy of NG2+

pericytes which equips them with immunosuppressive properties that favor tumor cell survival
and prevent antitumor T cell responses [81]. Pericytes have also been implicated in the underlying
pathophysiology of emergent infectious diseases such as coronavirus disease 2019 (COVID-19)
[82], thus presenting an additional niche of investigation for the field in the coming years. In con-
clusion, the importance of pericytes during various inflammatory processes is growing in recog-
nition, although the modulation of immunity by pericytes can have double-edged outcomes.

Do pericytes contribute to fibrosis?
A dysregulated tissue repair response after acute or chronic injury can lead to the onset of fibrosis
associated with the abnormal accumulation of activated and contractile αSMA+ myofibroblasts
[83]. Myofibroblasts secrete high amounts of inflammatory mediators, growth factors, and ECM
components, and promote aberrant ECM remodeling. The current consensus places fibroblasts
as the predominant origin of myofibroblasts, although various studies have found alternative cel-
lular origins [83]. Indeed, the existence of pericyte-to-myofibroblast transition has been proposed
as a contributing factor in several fibrotic contexts [2], but the promiscuity of cell markers within
the mesenchymal compartments across tissues has led to ambiguous and contradictory obser-
vations. In the latest developments, scRNA-seq, ATAC-seq, and spatial transcriptomics provide
new insights into this conundrum which support a pericyte origin of myofibroblasts in the fibrotic
liver, colon, and kidney. For instance, central vein-associated Rgs5+ HSCs are thought to be the
dominant origin of ECM-producing myofibroblasts in fibrotic mouse liver [84]. In human colorectal
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cancer, a subset of periostin (POSTN)+ myofibroblasts seem to originate from RGS5+ pericytes
[70]; similarly, NOTCH3+RGS5+PDGFRβ+ human pericytes contribute to the generation of
POSTN+PDGFRα+NKD2+ myofibroblasts during kidney fibrosis [85]. Surprisingly, however,
the same authors did not capture the existence of profibrotic pericytes during myocardial infarc-
tion when sequencing the entire heart [86]. Although transdifferentiation from pericytes to
myofibroblasts may be tissue-specific, it is fair to acknowledge that the latter study did not include
pericytes in the trajectory analysis that predicted the origins of myofibroblasts.

Lineage-tracing experiments in mice have also cast some light onto the role of pericytes in fibro-
sis. For instance, Pham et al. showed that myofibroblast genes are enriched in Tbx18+ pericytes
from injured mouse hearts and brains [87], and Dias et al. reported that GLAST+PDGFRβ+

perivascular cells also contribute to fibrosis in the post-stroke brain [88]. In line with this, depletion
of GLAST+PDGFRβ+ perivascular cells in the spinal cord leads to reduced fibrotic scar after injury
and improves neuronal function [89]. Of note, GLAST+PDGFRβ+ perivascular cells were charac-
terized as spinal cord pericytes by the researchers, but there is insufficient evidence to rule out
that these cells might be fibroblasts or astrocytes. This further exemplifies that the shared marker
expression profiles of pericytes and other perivascular residing cells still hamper the design of
robust pericyte reporter models. Moreover, multiple studies have found no significant pericyte
origin for myofibroblasts in distinct fibrosis models of the CNS [90,91] and heart [92]. Although
the discrepancies between studies may reflect the lack of robust pericyte identification strategies,
it appears that the occurrence of pericyte-to-myofibroblast transition is tissue-specific, and is
contingent both on the local microenvironment and on the extent of the injurious stimuli [83].
This emphasizes the need to further unravel the fibrotic pericyte responses in different organs
and prompts the question of how myofibroblast origins relate to different pathophysiological
phenotypes. All things considered, the origin of myofibroblasts may involve distinct precursor
cells depending on the circumstances, although a role for pericytes seems to be indisputable
(Figure 4).
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Figure 4. Pericytes as a source of myofibroblasts in fibrosis. Schematic illustration showing how, under stress
conditions, pericytes detach from vessels and undergo a transition towards highly contractile, extracellular matrix (ECM)-
producing myofibroblasts. The relative contributions of pericytes versus fibroblasts in a given context remains a topic of
ongoing debate and investigation. Pericytes and fibroblasts may play different roles in fibrosis depending on several
factors, including the anatomical location, local microenvironment, source of injurious stimuli, and technical biases.
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Outstanding questions
Why are pericytes molecularly and
functionally promiscuous and
heterogeneous between distinct
tissues? If the transcription factors
that regulate pericyte differentiation
and function are similar across
tissues, will epigenetic mechanisms
provide cues into the mechanisms of
pericyte identity?

Will spatial molecular atlases focused
on pericytes address the key
functional and identity conundrums
posed by transitioning phenotypes?
Will this suffice, or are complementary
morphological and functional studies
also necessary?

Will pericyte-focused therapy provide
new means to stimulate functional an-
giogenesis in pathology? Given that
pericytes are associated with many
diseases, will (and how broadly can)
pericyte-focused therapies improve
patient outcomes?

Neurodegenerative diseases are age-
related diseases, and pericyte degen-
eration is an aging process. Hence, is
pericyte degeneration a confounding
factor in the development of age-
related neurodegeneration? Will main-
taining healthy pericyte function pro-
mote healthy aging?
Concluding remarks
It is widely recognized that pericytes play an important role in blood vessel formation, stabilization,
and function, and that degeneration or loss of brain pericytes impairs their protective barrier prop-
erties. Recent advances have revealed novel and crucial roles for pericytes across tissues in a
variety of vascular and non-vascular processes. Single-cell technology is becoming more com-
monly used to better understand the molecular processes that define pericytes in health and dis-
ease. Although the molecular and functional attributes of pericytes are not fully elucidated, deep
sequencing has revealed organotypic pericyte heterogeneities and new criteria to distinguish
pericytes from other cell types. Despite the numerous suggested roles of pericytes in various dis-
eases and physiological processes, including neurodegeneration, cancer, fibrosis, blood flow
regulation, and inflammation, the underlying organotypic mechanisms of these contributions
are not yet fully understood. The discrepancies between some studies highlight the importance
of designing suitable mouse models for evaluating the specific mechanisms by which pericytes
impact on these processes, and future cross-validations with human data are warranted to as-
certain the clinical relevance of pathological pericytes (see Outstanding questions). Overall,
based on the emerging evidence on the contribution of pericytes to several diseases, we antici-
pate an increasing emphasis on pericyte-oriented research in vascular (and non-vascular) studies
in the coming years.
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